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BIRNINGNUCLEAR WASTES IN FuSIONREACTORS*

tkelnerW. Meldner and W. Michael Howard
tlniversityof California, Lawrence Livermore Laboratory

Livermore, California 94550 USA

Ue have studied actinide burn-up in ICF reactor pellets; i.e. 14 MeV neutron fission of
the very long-lived actinides that pose storage problems. A major advantage of pel?et fuel
region burn-up is safety: only milligrams of highly toxic and active material need to be
present in the fusion chamber, whereas blanket burn-up requires the continued presence of
tons of actinides in a small volume. The actinide data tables required for Monte Carlo
calculations of the bum-up of 24~Am and 243Am are discussed in connection with a study
Of the sensitivity to cross section uncertainties. More accurate and complete cross sections
are required for realistic quantitative calculations.

I. Introduction

Amajor factor in the present nuclear power
debate is the disposal of long-lived radioactive
isotopes of high dose rates. In this paper w
discuss possible solutions of this problem utilizing
the,future technology of fusion reactors.

A significant amount of work has been done on
the design of laser driven inertially confined fusion
pellets and on the use of such pellets in conceptual
fusion power reactors. Me discuss here a scheme
uhereby the radioactive wastes from fission reactors
can be burned up during the early development of
fusion reactors, even before fusion plants become
economically competitive with fission power sources.

Using the high energy neutrons frcunfusion
reactors for burning up radioactive wastes has been
discussed for many years. However, we believe that
only the inertial confinement fusion (ICF) approach
satisfies the necessaryPracticalsafetycriteria.
Thisisbecauseour proposed ICF scheme does not
require a near critical assembly of highly toxic
amounts of nuclear materials. This is in contrast to
the use of magnetically confined fusion or other
methods using blanket burn up. The type of future
fusion reactor technology which we have in mind for
our proposal is that of the HYLIFE concept proposed
by UL1 .

There are two major categories of high level
radioactive waste from fission reactors: fission
products and actinides. All fission products that
contribute significantly to the hazard potential have
half lives of order 30 years or less, i.e., their
contribution to the radioactivity drops on that
relatively short time scale although they dominate
during the first 200 years or so of storage because
“of their abundance in nuclear wastesl. The truly
long term hazard potential is determined by
actinides, some of which have half lives of over
106Years. ‘ ~ -

‘he ‘aJOr act’n’des ‘n ;il$;::onare:244Cm, 238PU 242Cm, 241Am, 243~,
239PU, and 2~7NP. The Cm and Pu isotopes have
power source applications and will therefore normally
be separated and (cormnercially)used. The fission
cross sections for 2~~~243Pm and 237Np are very
lcntfor typical fission spectrum neutrons. As a
consequence, th~se isotopes are essentially useless
and accumulate in abundance in fission reactors.
They are therefore the standard test materials for
the evaluation and comparison of potential long-term
waste management concepts2$3,J. In this paper we
describe a transmutation or “actinide burning” method
which we had proposed several ears ago~ as a major

3alternative to blanket burn-up methods.

● Uork performed under the auspices of the U. S.
Department of Energy by the Lawrence Livermore
Laboratory under Contract No. W-7405-ENG-48.

We knowof only one actual publication about
Monte Carlo Calculations of pellet center neutron
reactions on heavy elements in the fusion fuel
region6.

The (computer) design of reactor-size fusion
pellets7 has now been sufficiently finalized for
quantitative transmutation studies. The relevant
features of a “standard” fusion reactor pellet in its
imploded configuration are described in Section 2.
The corresponding neutron spectra are discussed in
Section 3 along with the results for transmutation of
the three isotopes in question using both the
“standard” and a somewhat burn-up optimized pellet.
Ue conclude in Section 4 with a brief discussion of
the required actinide data and some results of our
sensitivity analysis.

2. Fusion Reactor Pellets

Several high-gain reactor pellet designs have
been published,recently by Lind18. The
calculations here are based on a relatively
conservative design, also by Lindl, with a gain on
the order of 300.

The imploded configuration of such a target as
shohn in Fig. 1 is a schematic representation
simplified to two homogeneous regions. However, it
was carefully matChed to the implosion-explosion
characteristics of the full design, especially with
respect to neutronics and other energy transport
features.

The only high-atomic-number, Z, material in the
composite material tamper is 6 mg of~99.9% pure
208pb. This choice minimizes accumulative neutron
activation.

The imploded configuration of this standard
pellet is reached after using W MJ of laser or
“beam” energy and the resulting thermonuclear yield
is 1800 MJ. The same pellet configuration with its
imploded density doubled, as indicated in Fig. 1,
serves as an example of a more transmutation
optimized design. The actinides are admixed to the
fuel by Raleigh Taylor instability effects at the
inner tamper surface.

3. Monte Carlo Calculation of Neutron Reactions in
the Explosion

Realistic computations of neutron spectra and
reactions require careful consideration of the
rapidly disassembling burning fuel. The broadening
resulting from fast ions is, for example, quite
significant4,8. A plasma of thermal electrons and
ions, x-rays and thermonuclear reaction products was
evolved in time with Lagrangian thermonuclear burn

_and explosion calculations (see for example reference
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_iOr- “Nc+s-thermal charged particle transport and 1 ~
reactions were also i nc 1uded. The el@rOns and i Ons
are assumed to be Maxwll tan, but with different
eff active temperatures. Neutrons were Monte Car 10 ;
transmuted and the cross sect ions were taken from [
rafer+nce 10.
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A tricnsfer matrix formed from the 1978 I
●valuated-n~ 1ear-data 1 ibrary ( ENOL) neutron cross :
sections is used t? ca !CU 1ate the neutron transport,
reacti ens, and rad I strl butl on of neutrons among
energy groups. Figure 1 shows the time-integrated
neutrm sp-tra for the fuel region of pellets in ,
which the fuel density times the fuel radius R
equals 5.0 g/crr2. The amount of downscatteri ng is I
noticeabl different f mm some pub 1i shed

i
,

estimates 2 that did not involve the detailed
<xplosion simulations and extensive Monte Carlo \

celcu lat ions performed here. The high -eneWY
( >15 MeV) neutrons contribute noti ceab IY tO th~ burn !

,,* by. fast fiSSi On.
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Fig. 1. Inwlcdadconfigurati~ of a reactor-size
fusion pellet. In the standard case, compression
results in a density Of 70 glc~ f Or bOth the
de+zterium-tritium (OT) fuel and the tamper, i e., P R

~wcre.asinq PR to 5.o g,cm$ bY d0ublin9
= 2.5 g/cni2 and the yield is ‘181313 ‘J 0.43 ‘O”s ‘f
explosive).
tamper and fuel density improves burnup considerably I
as discussed in the text (cf., Fig. 4).
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Fig. 3. Neutron speCtPa f Or a PR = 5 9/c~ Pellet
with admixture of 12 mg of 241AJn. The dashed 1 i ne
indicates the shape of the spectrum without fissicm
contributions. (cf., Figure 2).
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Fig. 4. Metric tons of actinides burned up per year
as function of their admixture to the OT fue 1. The
scale refers to 108 explosionslyear roughly
correspond i ng to a reactor power output of about one
6!4.

Fig. 2. Neutrrm spac~ra for the PR = 2.5 and 5.0
gfca? pellets as indicated.
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I
Figure 4 depicts our bum-up results. The

I

nonelastic reactions explicitly followsd for each
isotope in question are (n, n’), (n, 2n), (n, 3n),
(n, 4n), (n, y ) and (n, fission). The actual loss
per target seed is plotted in Fig. 4 as metric tons
burned UP for 108 shots. The curves turn Over
because increased admixture of high Z material to the
fuel eventually squelches the thermonuclear
bootstrapping by absorptive processes. The 1 imits in
the ratio of burned to admixed actinides as depicted
in Fig. 4 indicate how a few milligrams of active
material wi 11 accumulate from each shot. In addition
sane fission products wi 11 also accumulate. The
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~gest lived fissfcm products fromAm ffsslonat ‘
thermrsruclearneUtrOn energies are1291(T = 1.57 x

~~~’a~~~$~d~~=x6 ~6~)i~6~~~~ = 2 ~,e

Isotopes wi11 be produc~ at a level of a few percent
of the original admixture, as wi11 242AM from
neutron capture on 241An. Insignificant amounts
($ 0.1%) of 243PM wil1 be produced by neutron
capture on z41h. Neutron reactions on the fission
fragnents (n,2rJ being the mOst imPOrtant wi11 alsO
be of some importance in rearranging the fission
fraament distribution. These quantities are,
howiiver,similar to the am.wnts of tritium and
activated first wall/structure material produced per
●xplosion in any ICF reactor. The complications of
reprocessing unburned actinides therefore do not
Significantly change the operational hazard potential i
relative to a “pure fusion” plant. This is in marked
contrast to any hybrid andlor bIanket burn-up
device. Continuous separation of fission products
and heavy radioactive materials would seem to be
strai ghtfoward with the proposed remote systems of
HYLIFE-type reactor conceptsl. The liquid Li
.current continuouslyremoves actinides and fission
products, is a mediun to breed the tritium necessary
for self-sufficiency, and serves as a convactor fluid
and first wall shield for neutrons, x-rays and
debrts.

Although exact estimates are not pasible
without specifying the twe of reactor and initial
waste reprocessing involved, we conclude that our
reaults demonstrate hwd just one ICF power P1 ant
could ~ take care of the actinide waste of about
10 power equivalent fission reactors.

4. Sensitivity Results and Conclusions

Table I lists actinide neutron reaction data
used in the present work. Our sensitivity studies
for this type of input have not been completed. One
result is that a 20% shift in the 241Am(n,f) cross
secticm for all energies produces a 17% change in the
amount of material burned UP. We found 1arge
discrepancies in the published fission cross sections
for neutron energies belcw 100 keV; our results,
however, ars quite insensitive to the low enerw part
of the input. Example: reducing all 24km(n,f)
cross Sactiofi below lKl keV to 10 mb gives changes
of less than one percent. The reaction data for high
energy neutrons (212 MeV) are clearly the major
factors determining the burn UP character i St i w. In
addition. more detailfxlinformation on fission
product ~ield is of great interest here, in
particular for 243Pm and 237NP.

These calCU1atlons suggest that although many
orders of magnitude may be gained in dose rate!
,relativeto the initial 241PM, long-lived fission
products will result. Hovever, these isotopes can be
dealt with in a more conventional manner, for
example, by exposure to thermal neutrons.
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M
N
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G
0
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0
a

.8
0

0

;,;0.5,.15s10. ? . z..,..- .
. , “,.”. ,. . . .

Z.000o. :
?. OCCO. t
S..mo. 0
S.umo. o
,.”0,0. 0

5.” OCO. 0
5.*000. 0
5.!.209. 0
5.5.?00. 0
3.52eo. 0
S.woo. 0. . . . . . .

,[”6, OIP. ,: . :.yey,; ;. . .
. .. . . . . . . .

. . . 5.0009- 2 2.?:03. a
0.0000. 0 $.0000- z 2. OCOO. 1

aTakenfrcmR.J.Howcrton andM. H. MacGregor,LAX-S0400,Vol.15, Part
D, Rc$V. 1, ?. 386.
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